Renatel Meeting

24-04-2019

Objetivos e Última Apresentação

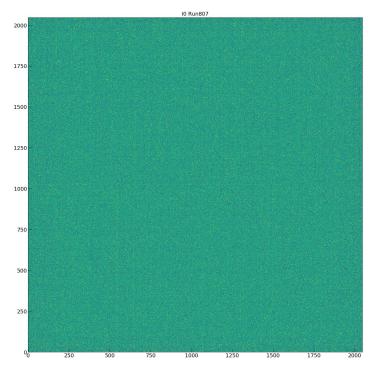
- Objetivo geral
 - Ajudar na análise e processamento dos dados do experimento Cygnus.
- Objetivos específicos
 - Desenvolver um algoritmo capaz de executar uma rápida e eficiente clusterização nas imagens coletadas;
 - Análise e criação das variáveis que serão usadas posteriormente na classificação dos sinais;
 - Desenvolver algoritmo para classificação dos eventos.
 - ☐ A ideia é usar o KDE + Likelihood nessa tarefa.

- Última apresentação
 - Foi apresentado o momento atual do trabalho;
 - As tarefas a serem executadas.

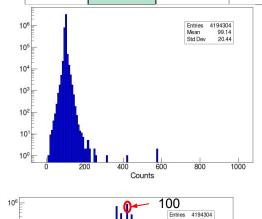
Tarefas nas últimas semanas

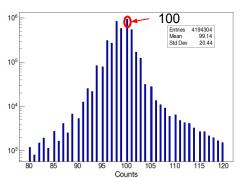
- Artigo do Ibpria Rejeitado
- Análise do RUN494
- Visita Giovanni
 - Definir Datas
 - Definir Curso
 - Preparar Formulário
 - Encaminhar pedido
- Análise RUN815 FNG
 - Implementer i2dbscan no algoritmo do Emanuele
 - Tunar parametros
 - Analisar resultados
- → Artigo David
- □ Artigo Discretização

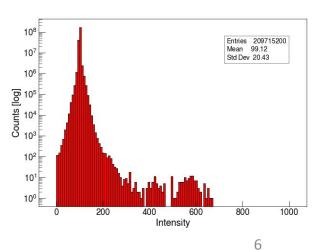
- Not started
- In process
- First version
- Done

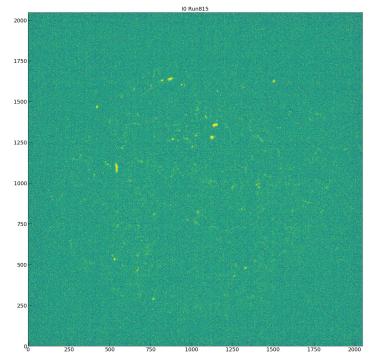

RUN 815

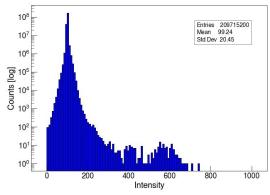
FNG DATA

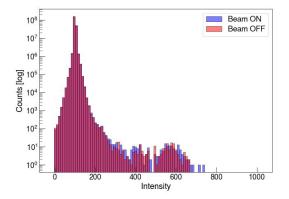

- Separate Nuclear Recoil from everything else
- Evaluate Eff vs length
- Get the parameters:
 - Length
 - Width
 - Photons/pixel
 - Profile
 - o Etc

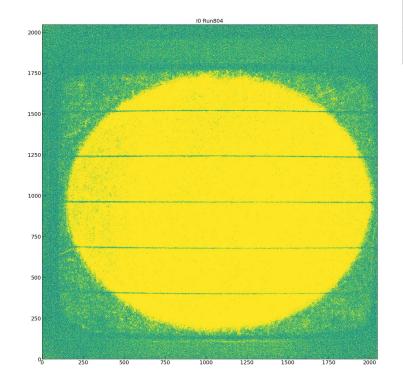

About the FNG data


We have the Run 807 with BEAM OFF


GEM Voltage (V)	He:CF4	Transfer field strength (kV/cm)	CMOS Exposure Time (ms)	Nominal Flux cubic cm/min	Effective flux cubic cm/min	Acquisitio n Number (# Events)	Up Voltage (V) (fixed)
420	60/40 premix	2	100	300	218.4	100	2060




About the FNG data


We have the Run 815 with BEAM ON

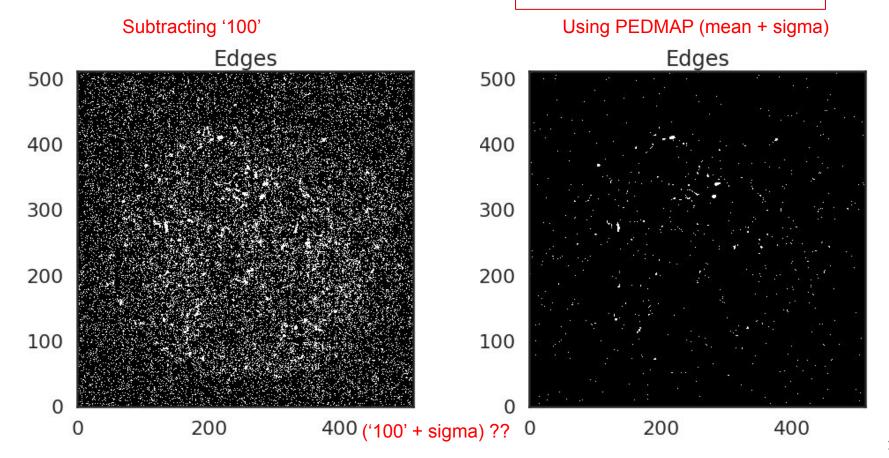
GEM Voltage (V)	He:CF4	Transfer field strength (kV/cm)	CMOS Exposure Time (ms)	Nominal Flux cubic cm/min	Effective flux cubic cm/min	Acquisitio n Number (# Events)	Up Voltage (V) (fixed)
440	60/40 premix	2	100	300	218.4	300	2120

About the FNG data

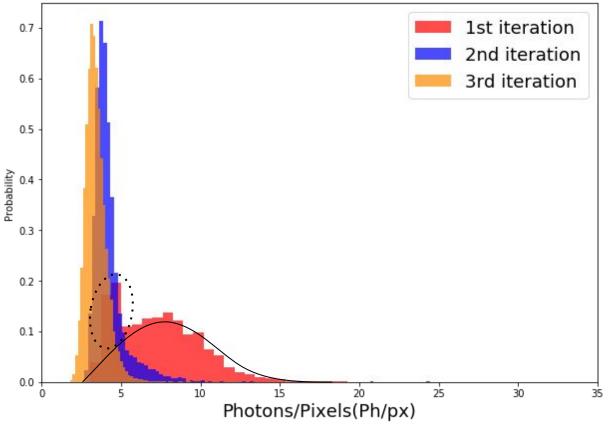
We have the Run 804 with BEAM ON

GEM Voltage (V)	He:CF4	Transfer field strength (kV/cm)	CMOS Exposure Time (ms)	Nominal Flux cubic cm/min	Effective flux cubic cm/min	Acquisitio n Number (# Events)	Up Voltage (V) (fixed)
420	60/40 premix	2	10000	300	218.4	10	2060

Here we can observe the 'Sensitive' region of the detector.


Could we simply exclude everything out of this ellipse?

NO, it is better to stay analysing everything.


Subtracting Pedestal

Subtracting Pedestal

we are using the RUN817 to make the pedmap

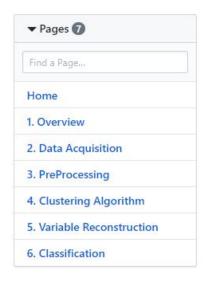
Cluster reconstruction

- It seems that the 2nd and 3rd iterations are getting background.
- And in the left part of the 1st iteration we are having some 'contamination';
- Maybe will be better to set tight the parameters of the 1st and 2nd iterations;

Documentação CYGNO

GitWiki https://github.com/CYGNUS-RD/analysis/wiki

Home


Igor Abritta edited this page 3 hours ago · 2 revisions

Here you can find some information about CYGNO analysis algorithm (Under Construction)

- Overview
- Data Aquisition
- Image Pre-Processing
- Clustering Algorithm
- · Variable Reconstruction
- Classification

+ Add a custom sidebar

Artigo Discretização

Artigo Discretização

- Revisão bibliográfica sendo feita no Cartão do Trello.
- Até agora não consegui encontrar muitos trabalhos que abordaram a discretização para o KDE.
- A maioria dos trabalhos que falam de Estimação não paramétrica já deixa claro que usa "equally-spaced grid".
- Sempre que encontro sobre discretização e KDE é do ponto de vista de binagem dos dados para diminuir o custo computacional do Kernel.
- Mas achei muitos trabalhos que tentam calcular analiticamente o erro de discretização.
- Por fim, tenho conversado com o David para tentar usar o framework dele para testar os métodos e desenvolver um método de escolha da posição dos pontos minimizando o erro. Como se fosse o truth.

Revisão Bibliográfica

Grid convergence for adaptative Methods: Esse artigo de 1991 explica um pouco sobre o erro proveniente da escolha do grid de maneira linear e apresenta duas soluções para amenizar esse problema: remanejamento de pontos para regiões de interesse ou a adição de pontos onde é necessário. Ressalta ainda que o segundo caso é mais complexo e pode aumentar consideravelmente o número de pontos. Entretanto o primeiro pode levar a um menor erro mesmo com a mesma quantidade de pontos.

Review of Discretization Error Estimators in Scientific Computing: Esse artigo de 2010 disserta sobre metódos de estimação do erro de discretização.

<u>Error estimation and iterative improvement for discretization algorithms</u>: Esse artigo de 1980 aborda o calculo 'analitico' do erro de discretização em equações diferenciais, além de propor modelos iterativos para suavizar esss erro.

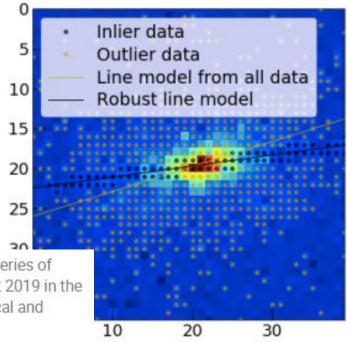
<u>Supervised and Unsupervised Discretization of Continuous Features</u>: Artigo de 1995 compara varios metodos de discretização no prisma de pre-processamento para ser passado a algoritmos de classificação.

Mostra que em muitos casos há um ganho de performance na classificação quando o Dataset é discretizado antes.

<u>The Effect of Discretization Error on Bandwidth Selection for Kernel Density Estimation</u>: Artigo de 1991 que disserta sobre um problema de se usar CV para escolha da largura de banda em datasets discretizados.

<u>Discretized and Interpolated Kernel Density Estimates</u>: Esse artigo de 1989 disserta sobre dois temas. O primeiro é uma comparação sobre o erro de discretização entre Histograma, FP, KDE nearest e KDE linear, concluindo que o último apresenta uma melhor 'suavização' e diminuição do erro (entretanto não comenta sobre usar outros tipos de grids). O segundo ponto é a abordagem da discretização no conjunto de dados antes de passar para o estimador, o que apresenta ganho computacional, mas pode ocasionar perda acuracia.

Algoritmo de Direcionalidade


Algoritmo de Direcionalidade

Outro desafio do Experimento CYGNO será o desenvolvimento de um algoritmo para extrair a direção da particular e o Head-Tail.

The CYGNUS 2019 workshop on directional dark matter detection is the seventh in a series of directional dark matter detection workshops. The workshop will be held on July 10-12 2019 in the campus of La Sapienza in Roma (Italy). The Scientific Program includes both theoretical and experimental results on

- R&D detector progress
- Directional Data Analysis
- Directional Theory
- New Ideas on the directional detection
- Future of Directional Detection

PPedestal mean: 99.09, sigma: 1.10, over th. (300) 1 Sigma mean: 2.54, sigma: 2.14, over th. (50) 16 Th mean = 102.15, sigma = 2.82 Signal: 11661 photons 116.61 keV

