
 

 

ASSIGNMENT: Question 1 

Normally you can cite as [H&M 2000, §1.1] 

The number of meteorites falling on an ocean in a given year can be modeled by a geometric 

distribution counting the number of Bernoulli trials with 𝑝=0.44 until it succeeds. Give a graphic 

showing the probability of one, two, three … meteorites falling (until the probability remains 

provably less than 0.5% for any bigger number of meteorites). Calculate the expectation and 

median and show them graphically on this graphic. 

Task 1: Basic Probabilities and Visualizations 
In geometric distribution, we will consider performing independent Bernoulli trials where the 

probability of success, p, is fixed from one trial to the next, and the trials are performed until the 

first success is observed. In this case, the probability of success is 0.44 is the probability that a 

meteorite will land on an ocean in a given year. Let 𝑋 count the failures until the first success 

occurs. The possible values of 𝑋 are 0,1,2,3…. We may observe a success on the first trial, in which 

case 𝑋 = 0 (no failures). We may get quite unlucky as there is no upper bound on the number of 

trials! However, we stop when the probability is provably less than 0.5% for any larger number of 

meteorites. In this setup, X is said to have a geometric distribution, with the probability of success p 

written as  X ~ Geometric(p). Remember that we can only observe outcomes with one success and 

this success occurs on the last trial. Therefore, possible outcomes look like “S”, “FS”, 

“FFS”,“FFFS”, “FFFFS”, etc. Using independence, values of the PMF, f, for X are: 

• 𝑓(0) = 𝑝(𝑆) = 𝑝 

• 𝑓(1) = 𝑝(𝐹𝑆) = (1 − 𝑝)𝑝 

• 𝑓(2) = 𝑝(𝐹𝐹𝑆) = (1 − 𝑝)2𝑝 

• 𝑓(3) = 𝑝(𝐹𝐹𝐹𝑆) = (1 − 𝑝)3𝑝 

Continuing in this way, we see that the PMF of X is given by: 

 

𝑓(𝑥) =  𝑃(𝑋 = 𝑥) = {
(1 − 𝑝)𝑥𝑝    𝑖𝑓 𝑥 =  0,1,2,3, . . . ,

0                     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                    Eq 1 

Similarly, If the probability of success (meteorite falling on the ocean) on each trial is p, the 

probability that the kth meteorite is the first success is given by Probability Mass Function (PMF) 𝑓: 

𝑓(𝑥) =  𝑃(𝑋 = 𝑥) = {
(1 − 𝑝)𝑥−1𝑝    𝑖𝑓 𝑥 =  1,2,3, . . . ,

0                     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                    Eq 2 

The probability of that first meteorite falling on an ocean: 

• 𝑃(𝑋 = 1) = (1 − 0.44)1−1 ∗   0.44 = 0.44   

• 𝑃(𝑋 = 2) = (1 − 0.44)2−1 ∗   0.44 = 0.2464  

• 𝑃(𝑋 = 3) = (1 − 0.44)3−1 ∗   0.44 =  0.137984  



 

 

The calculation is performed iteratively until the cumulative probability exceeds 0.995 (1 - 0.005), 

ensuring that the probability of observing a larger number of meteorites is less than 0.5%. 

The formula for the geometric distribution CDF is given as follows: 

𝐹(𝑥) =  𝑃(𝑋 ≤ 𝑥) = {
1 − (1 − 𝑝)𝑥     𝑖𝑓 𝑥 > 0 ,
0                     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Using the source code, it is has been proved that beyond 10 the probability is less than 0.005 

Expectation:  

Let X Geometric p for 0 < p < 1, then its PMF is given by equation 2, The expected value is  

𝐸[𝑋] =  
1

𝑝
= 

1

0.44
= 2.27  

The expectation represents the average number of trials (meteorites falling) until the first success. 

 

The median is the middle value in a distribution, below which 50% of the observations fall. For the 

geometric distribution, the median can be approximated using the formula: 

𝑀𝑒𝑑𝑖𝑎𝑛[𝑋] =  ⌈
−1

log2(1−𝑝)
⌉ = ⌈

−1

log2(1−0.44)
⌉ = 2 

Note that the ⌈ ⌉ notation represents ceiling function. 

 

Question 2: 

Let 𝑌 be the random variable with the time to hear an owl from your room’s open window (in 

hours). Assume that the probability that you still need to wait to hear the owl after 𝑦 hours is given 

by 0.53𝑒−8𝑦
2
+  0.46𝑒−3𝑦

8
 . Find the probability that you need to wait between 2 and 4 hours to 

hear the owl, compute and display the probability density function graph as well as a histogram by 

the minute. Compute and display in the graphics the mean, variance, and quartiles of the waiting 

times.  

Solution: 

The probability that you still need to wait to hear the owl after 𝑦 hours is given by: 

𝑓(𝑦) =
53

99
𝑒−8𝑦

2
+ 
46

99
𝑒−3𝑦

8
 

The survival function of a random variable is defined as the probability that the random variable is 

greater than a certain value.  

The CDF of a random variable Y is the probability that Y is less than or equal to a certain value y. 

In this case, the CDF of Y is given by: 

𝐹(𝑦) = 1 − ( 
53

99
𝑒−8𝑦

2
+ 
46

99
𝑒−3𝑦

8
) 

 

 



 

 

To find the probability that you need to wait between 2 and 4 hours to hear the owl, we use: 

𝐹(4) − 𝐹(2) = (1 − ( 
53

99
𝑒−8𝑦

2
+ 
46

99
𝑒−3𝑦

8
)) − (1 − ( 

53

99
𝑒−8𝑦

2
+ 
46

99
𝑒−3𝑦

8
)) 

= (1 − ( 
53

99
𝑒−128 + 

46

99
𝑒−196608)) − (1 − ( 

53

99
𝑒−32 + 

46

99
𝑒−768)) 

The probability density function (PDF) of Y is given as: 

𝑓(𝑦) =  
𝑑𝐹(𝑦)

𝑑(𝑦)
=
𝑑(1 − ( 

53
99
𝑒−8𝑦

2
+ 
46
99
𝑒−3𝑦

8
)

𝑑(𝑦)
= 0 − 

𝑑 ( 
53
99
𝑒−8𝑦

2
+ 
46
99
𝑒−3𝑦

8
)

𝑑(𝑦)
  

Simplifying each term, we get: 

𝑓(𝑦) =
848𝑦

99
𝑒−8𝑦

2
+ 
1104

99
𝑒−3𝑦

8
 

The mean is given by: 

 

𝐸(𝑌) = ∫𝑦 𝑓(𝑦) 𝑑𝑦 

 

The variance is given by: 

 

Var(𝑌) = ∫(𝑦-𝐸(𝑌))^2 𝑓(𝑦) 𝑑𝑦 

 

The quartiles can be calculated by finding the values of 𝑦 for which the cumulative distribution 

function (CDF) reaches 0.25, 0.5 

1 − ∫ (
53

99
𝑒−8𝑦

2
+ 
46

99
𝑒−3𝑦

8
)𝑑𝑦  

∞

𝑦

 

Question 3:` 

A type of network router has a bandwidth total to first hardware failure called 𝑆 expressed in 

terabytes. The random variable 𝑆 is modelled by a distribution whose density is given by the 

function: 

𝐹𝑠(𝑠) =  
1

𝜃
 𝑓𝑜𝑟 𝑆 ∈ [0, 𝜃] 

with a single parameter 𝜃. Consider the bandwidth total to failure 𝑇 of the sequence of the 

two routers of the same type (one being brought up automatically when the first is broken).  

Express 𝑇 in terms of the bandwidth total to failure of single routers 𝑆1 and 𝑆2. Formulate 

realistic assumptions about these random variables. Calculate the density function of the 

variable 𝑇.  



 

 

Given an experiment with the dual-router-system yielding a sample 𝑇1, 𝑇2, …, 𝑇𝑛, 

calculate the likelihood function for 𝜃. Propose a transformation of this likelihood function 

whose maximum is the same and can be computed easily.  

An actual experiment is performed, the infrastructure team has obtained the bandwidth totals to 

failure given by the sequence 77, 2, 20, 32, 14 of numbers. Estimate the model-parameter with the 

maximum likelihood and compute the expectation of the bandwidth total to failure of the dual-

router-system. 

Solution: 

We assume that: 

1. 𝑆1 and 𝑆2  are independent random variables: We assume that the failures of the two 

routers are independent events. The failure of one router does not affect the failure 

probability of the other. 

2. 𝑆1 and 𝑆2  follow the same distribution with parameter 𝜃. This assumption implies that the 

two routers have the same failure characteristics and are subject to the same 

environmental factors. 

3. The distribution of S1 and S2 is uniform with parameter θ. 

Since the dual-router system consists of two routers of the same type, the total bandwidth to failure 

𝑇 can be expressed as the sum of the bandwidths to failure of the individual routers, 𝑆1 and 𝑆2  with 

density functions 𝑓1(𝑠)  and 𝑓2(𝑠)  defined for all 𝑆 ∈ [0, 𝜃]. Then the sum, 𝑇 = 𝑆1 + 𝑆2 is a random 

variable with density function 𝑓𝑇(𝑡) , where 𝑓𝑇  is the convolution of 𝑆1 and 𝑆2 . 

Since 𝑓1(𝑠)  = 𝑓2(𝑠) = {
1

𝜃
               𝑖𝑓 𝑆 ∈ [0, 𝜃]

0                    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Then, the density function 𝑓𝑇(𝑡) = (𝑓1 ∗ 𝑓1)(𝑡) =  ∫ 𝑓1(𝑠)𝑓2(𝑡 − 𝑠)𝑑𝑠
𝑠

0
 

This a corollary of the transformation theorem states that the density function of 

the sum of two continuous random variables is the convolution of the density functions. 

If the two random variables are uniformly distributed on [a,b], then the sum is uniformly distributed 

on [2a,2b]. hence, 

 

𝑓1(𝑠)   = 
1

𝜃
   𝑖𝑓 0 ≤ 𝑆 ≤ 𝜃,  

Hence 𝑓𝑇(𝑡) =  
1

𝜃
∫ 𝑓2(𝑡 − 𝑠)𝑑𝑠
𝑡

0
  

Now the integrand is 0 unless 0 ≤ 𝑡 − 𝑠 ≤ 𝜃 (i.e unless 𝑡 − 𝜃 ≤ 𝑠 ≤ 𝑡)  and then it is  
1

𝜃
 So if  0 ≤

𝑡 ≤ 𝜃, we have 



 

 

𝑓𝑇(𝑡) =  
1

𝜃
∫

1

𝜃
𝑑𝑠

𝑡

0
 =  

𝑡

𝜃2
 

Then for    𝜃 ≤ 𝑡 ≤ 2𝜃, we have  

𝑓𝑇(𝑡) =  
1

𝜃
∫

1

𝜃
𝑑𝑠

𝜃

𝑡−𝜃
 =  

2𝜃−𝑡

𝜃2
 

𝑓𝑇(𝑡) = {

𝑡

𝜃2
        𝑖𝑓 0 ≤ 𝑡 ≤ 𝜃

2𝜃−𝑡

𝜃2
     𝑖𝑓 θ ≤ t ≤ 2θ

0             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    

Given an experiment with the dual-router-system yielding a sample 𝑇1, 𝑇2, …, 𝑇𝑛 are independent 

with common pdf 𝑓𝑇(𝑡𝑖|𝜃), the likelihood function for 𝜃 is the product of the probability density 

functions of the individual observations of T: 

𝐿(𝜃) =  ∏𝑓𝑇(𝑡𝑖|𝜃)

𝑁

𝑖=1

 

 

𝐿(𝜃) =  

{
  
 

  
 ∏

𝑡

𝜃2

𝑁

𝑖=1

             𝑖𝑓 0 ≤ 𝑡 ≤ 𝜃

∏
2𝜃 − 𝑡

𝜃2

𝑁

𝑖=1

     𝑖𝑓 θ ≤ t ≤ 2θ

0             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝐿(𝜃) =  

{
 
 

 
 1

𝜃2𝑛
(∏𝑡𝑖

𝑁

𝑖=1

)             𝑖𝑓 0 ≤ 𝑡 ≤ 𝜃

1

𝜃2𝑛
(∏(2𝜃 − 𝑡

𝑁

𝑖=1

))     𝑖𝑓 θ ≤ t ≤ 2θ

 

The density function of T is not continuously derivable, so using a derivative to calculate the 

maximum likelihood estimate of θ does not work. 

Since the likelihood function is a decreasing function of θ, 𝐿(𝜃) is maximized when 𝜃 = max (𝑇𝑖) for  

0 ≤ 𝑡 ≤ 𝜃  and also 𝐿(𝜃) is maximized when  𝜃 = min (𝑇𝑖) for θ ≤ t ≤ 2θ. 

That is 𝜃 =  max (𝑇𝑖).   

So, for the sequence of numbers representing the bandwidth totals to failure as 77, 2, 20, 32, 14, 

𝜃 =  max (𝑇𝑖) = max (77, 2, 20, 32, 14) = 77 

Remember to plot theta against L(theta) 

 

The expected value, denoted as E(𝑇), is calculated as follows: 

𝐸(𝑇) =  ∫ 𝑡 ∗ 𝑓𝑇(𝑡) 𝑑𝑡 
𝜃

0
= ∫ 𝑡 ∗

𝑡

𝜃2
 𝑑𝑡 

𝜃

0
 = 

𝜃

3
 = 77/3 



 

 

 

 

 

https://stats.stackexchange.com/questions/387826/maximum-likelihood-estimator-mle-for-2-theta2-

x-3 

https://cs.du.edu/~paulhorn/362/362assn6-solns.pdf 

 

https://math.hawaii.edu/~grw/Classes/2018-2019/2019Spring/Math472_1/Assignment10.nb.html 

 

https://mediaspace.baylor.edu/media/Finding+the+maximum+likelihood+estimator+of+the+upper+

bound+of+a+uniform%280%2C+B%29+distribution/1_9ku3alr3 

 

Task 4: Hypothesis Test  

Over a long period of time, the production of 1000 high-quality hammers in a factory 

seems to have reached a weight with an average of 816 (in 𝑔) and standard deviation of 

62.9 (in 𝑔). Propose a model for the weight of the hammers including a probability 

distribution for the weight. Provide all the assumptions needed for this model to hold (even 

the uncertain ones)? What parameters does this model have?  

One aims at answering one of the following questions about a new production system:  

Does the new system make less constant weights?  

 

To answer this question a random sample of newly produced hammers is evaluated 

yielding the weights in 803, 818, 793, 795, 807, 794, 823, 784, 786, 849.  

What hypotheses can you propose to test the question? What test and decision rule can you make 

to estimate if the new system answers the given question? Express the decision rules as logical 

statements involving critical values. What error probabilities can you suggest and why? Perform 

the test and draw the conclusion to answer the question. 

SOLUTION 

Since the sample size is n ≥ 30. To model the weight of the hammers, we can assume that the 

weights follow a normal distribution. This assumption is based on the Central Limit Theorem, which 

states that for a large enough sample size, the distribution of the sample mean approaches a 

normal distribution regardless of the shape of the population distribution. 

https://stats.stackexchange.com/questions/387826/maximum-likelihood-estimator-mle-for-2-theta2-x-3
https://stats.stackexchange.com/questions/387826/maximum-likelihood-estimator-mle-for-2-theta2-x-3
https://cs.du.edu/~paulhorn/362/362assn6-solns.pdf
https://math.hawaii.edu/~grw/Classes/2018-2019/2019Spring/Math472_1/Assignment10.nb.html
https://mediaspace.baylor.edu/media/Finding+the+maximum+likelihood+estimator+of+the+upper+bound+of+a+uniform%280%2C+B%29+distribution/1_9ku3alr3
https://mediaspace.baylor.edu/media/Finding+the+maximum+likelihood+estimator+of+the+upper+bound+of+a+uniform%280%2C+B%29+distribution/1_9ku3alr3


 

 

Assumptions for this model to hold: 

1. The weights of the hammers are independent and identically distributed (i.i.d.). 

2. The distribution of weights is approximately normal. 

The model has two parameters: 

• Mean (μ): The average weight of the hammers. 

• Standard deviation (σ): The spread of the weights around the mean. 

To confirm if the new system makes less constant weights, we need to state the 

hypothesis: 

Null Hypothesis (H0): 𝜎𝑛𝑒𝑤
2    =  𝜎𝑜𝑙𝑑

2 = 62.92  (The variance of the new system weights is equal to 

the variance of the old system weights.) 

Alternative Hypothesis (HA): 𝜎𝑛𝑒𝑤
2   <  𝜎𝑜𝑙𝑑

2  (The variance of the new system weights is less than 

the variance of the old system weights.)  

[Wolfram inc 2023, calculate standard deviation of {803, 818, 793, 795, 807, 794, 823, 784, 786, 849}], 

we get 𝜎𝑛𝑒𝑤 = 20.010 

Calculating the F critical value, put the highest variance as the numerator and the lowest variance 

as the denominator: 

F Statistic = 
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒ℎ𝑖𝑔ℎ𝑒𝑠𝑡

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑙𝑜𝑤𝑒𝑠𝑡
=  

62.92

20.012
= 9.8811 

 

The degrees of freedom in the table will be the sample size -1, so:  

For 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑜𝑙𝑑 with a sample size of 1000, the The degrees of freedom is sample size -1 =  999 

and 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑛𝑒𝑤 with a sample size of 10, the degree of freedom is 9 

 

And since no alpha was stated in the question, so use 0.05 (the standard “go to” in statistics) and 

the fact that we are looking for scores “lesser than” a certain point means that this is a one-tailed 

test.  

Finding the critical F Value using the F Table. make sure you look in the alpha = .05 table. Critical F 

(999,99) at alpha (0.05) = 1.89. 

The decision rule for the F-test is as follows: 

https://www.statisticshowto.com/probability-and-statistics/find-critical-values/
https://www.statisticshowto.com/probability-and-statistics/find-sample-size/
https://www.statisticshowto.com/probability-and-statistics/find-sample-size/
https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/one-tailed-test-or-two/
https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/one-tailed-test-or-two/
https://www.statisticshowto.com/tables/f-table/


 

 

• If the calculated F-test statistic is greater than the critical value from the F-Table, then reject 

H0. 

• Otherwise, do not reject H0. 

F calculated value:  9.8811 

F value from table: 1.89 

Since the calculated F-test statistic is greater than the critical value from the F-Table, we can reject 

the null hypothesis. 

9. Calculate the p-value. 

The p-value is the probability of observing a sample standard deviation of 18.98 grams or higher, 

given that the null hypothesis is true. In this example, the p-value is 0.0007259976652864525. 

Python 

p_value = stats.f.cdf(f_test_statistic, degrees_of_freedom, degrees_of_freedom) 

 

https://home.ubalt.edu/ntsbarsh/business-stat/StatistialTables.pdf 

 

Task 5: Regularized Regression  

Given the values of an unknown function 𝑓:ℝ→ℝ at some selected points, we try to calculate the parameters 

of a model function using OLS as a distance and a ridge regularization:  

a polynomial model function of eleven 𝛼𝑖 parameters:  

𝑓(𝑥) = 𝛼₀ + 𝛼₁𝑥 + 𝛼₂𝑥² + ... + 𝛼₁₀𝑥¹⁰ 

Calculate the OLS estimate, and the OLS ridge-regularized estimates for the parameters given the sample 

points of the graph of 𝑓 given that the values are y = (-4, 2270146.72), (15, 2597371459585), (-9, 

11756031746.56), (4, 4928348.79), (14, 1305326827257.86), (19, 26954912028633.17), 

(-11, 89948619287.32), (-16, 3914542381288.27), (-1, -13.98), (-3, 79342.22), (16, 

4563983667885.92), (-5, 26294495.16), (-8, 3529689518.48), (5, 46525773.07), (-2, -

918.13), (6, 264064520.43), (1, 0), (-13, 495396031253.45), (-18, 12916231635918.5), 

(20, 41703330897817.15), (17, 8258889165333.91), (8, 5044492419.44) 

Provide a graphical representation of the graphs of the approximating functions and the data points.  

Remember to include the steps of your computation which are more important than the actual computations. 

SOLUTION 

Given the polynomial model function is defined as: 

𝑓(𝑥) =  𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 +⋯+ 𝛼10𝑥

10  

https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/support-or-reject-null-hypothesis/
https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/support-or-reject-null-hypothesis/
https://home.ubalt.edu/ntsbarsh/business-stat/StatistialTables.pdf


 

 

where 𝛼0, 𝛼1, 𝛼2… 𝛼10 are the parameters of the model 

To calculate the Ordinary Least Squares (OLS) estimate for the parameters of the polynomial 

model function, we need to minimize the sum of squared residuals between the observed values 

and the predicted values from the model. 

𝛼̂ = argmin
𝛼
[∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2
𝑛

𝑖=0

] 

where the index 𝑖 runs over all data points in our data set, 𝑦𝑖 is the observed value and 𝑓(𝑥𝑖) is the 

predicted value. 

The sum of squares of n known data points is given by: 

𝑅𝑆𝑆 =  ∑(𝑦𝑖 − 𝑓(𝑥𝑖))
2

𝑛

𝑖=0

 

Substituting 𝑓(𝑥) in the equation above,  

𝑅𝑆𝑆 =  ∑(𝑦𝑖 − 𝛼0 + 𝛼1𝑥𝑖 + 𝛼2𝑥𝑖
2 +⋯+ 𝛼10𝑥𝑖

10 )2
𝑛

𝑖=0

 

To find the OLS estimate, we perform a partial derivative of the RSS equation with respect to each 

parameter 𝛼ᵢ and set the derivatives equal to zero. Using power rule 

𝜕

𝜕𝛼𝑖
(∑(𝑦𝑖 − 𝛼0 + 𝛼1𝑥𝑖 + 𝛼2𝑥𝑖

2 +⋯+ 𝛼10𝑥𝑖
10 )2

𝑛

𝑖=0

) = 0 

𝜕𝑅𝑆𝑆

𝜕𝛼0
=∑(2 ( 𝛼0 + 𝛼1𝑥𝑖 + 𝛼2𝑥𝑖

2 +⋯+ 𝛼10𝑥𝑖
10 − 𝑦𝑖

𝑛

𝑖=0

)
𝜕

𝜕𝛼0
(𝛼0 + 𝛼1𝑥𝑖 + 𝛼2𝑥𝑖

2 +⋯+ 𝛼10𝑥𝑖
10 − 𝑦𝑖))   

                      =    ∑ ( 𝛼0 + 𝛼1𝑥𝑖 + 𝛼2𝑥𝑖
2 +⋯+ 𝛼10𝑥𝑖

10 − 𝑦𝑖
𝑛
𝑖=0 ) = 0 

Similarly, 

𝜕𝑅𝑆𝑆

𝜕𝛼1
=∑(2 ( 𝛼0 + 𝛼1𝑥𝑖 + 𝛼2𝑥𝑖

2 +⋯+ 𝛼10𝑥𝑖
10 − 𝑦𝑖

𝑛

𝑖=0

)
𝜕

𝜕𝛼1
(𝛼0 + 𝛼1𝑥𝑖 + 𝛼2𝑥𝑖

2 +⋯+ 𝛼10𝑥𝑖
10 − 𝑦𝑖))   

=    ∑ ( 𝛼0𝑥𝑖 + 𝛼1𝑥𝑖
2 + 𝛼2𝑥𝑖

3 +⋯+ 𝛼10𝑥𝑖
11 − 𝑥𝑖𝑦𝑖

𝑛
𝑖=0 ) = 0 

Continuing in this manner, 



 

 

𝜕𝑅𝑆𝑆

𝜕𝛼2
= ∑( 𝛼0𝑥𝑖

2 + 𝛼1𝑥𝑖
3 + 𝛼2𝑥𝑖

4 +⋯+ 𝛼10𝑥𝑖
12 − 𝑥𝑖

2𝑦𝑖

𝑛

𝑖=0

) = 0 

𝜕𝑅𝑆𝑆

𝜕𝛼10
= ∑( 𝛼0𝑥𝑖

10 + 𝛼1𝑥𝑖
11 + 𝛼2𝑥𝑖

12 +⋯+ 𝛼10𝑥𝑖
20 − 𝑥𝑖

10𝑦𝑖

𝑛

𝑖=0

) = 0 

We can represent the above equations in matrix form use  a matrix method, however we could use 

scipy.optimize.curve_fit 

The OLS ridge-regularized estimates is  

𝛼̂ = argmin
𝛼
[∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2
𝑛

𝑖=0

+ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝛼)] 

= argmin
𝛼
[∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2
+ 𝜆∑𝛼𝑘

2

𝐾

𝑘=0

𝑛

𝑖=0

] 

where 𝜆 is a positive constant. 

Use the task5 code to get the estimate 

https://data36.com/polynomial-regression-python-scikit-learn/ 

https://www.statology.org/polynomial-regression-python/ 

 

https://muthu.co/maths-behind-polynomial-regression/ 

https://muthu.co/simple-example-of-polynomial-regression-using-python/ 

https://www.public.asu.edu/~gwaissi/ASM-e-book/module403.html 

https://www2.stat.duke.edu/~hc95/Teaching/STA103/lec14_notes.pdf 

https://www.geo.fu-berlin.de/en/v/soga-py/Basics-of-statistics/Linear-Regression/Polynomial-

Regression/Polynomial-Regression---An-example/index.html 

https://towardsdatascience.com/maximum-likelihood-vs-bayesian-estimation-dd2eb4dfda8a 

https://home.iitk.ac.in/~kundu/gamma-bayes-rev-1.pdf 

https://home.iitk.ac.in/~kundu/gamma-bayes-rev-1.pdf 

https://data36.com/polynomial-regression-python-scikit-learn/
https://www.statology.org/polynomial-regression-python/
https://muthu.co/maths-behind-polynomial-regression/
https://www.public.asu.edu/~gwaissi/ASM-e-book/module403.html
https://www2.stat.duke.edu/~hc95/Teaching/STA103/lec14_notes.pdf
https://www.geo.fu-berlin.de/en/v/soga-py/Basics-of-statistics/Linear-Regression/Polynomial-Regression/Polynomial-Regression---An-example/index.html
https://www.geo.fu-berlin.de/en/v/soga-py/Basics-of-statistics/Linear-Regression/Polynomial-Regression/Polynomial-Regression---An-example/index.html
https://towardsdatascience.com/maximum-likelihood-vs-bayesian-estimation-dd2eb4dfda8a


 

 

https://math.stackexchange.com/questions/4303041/derive-bayes-estimator-with-a-gamma-prior 

 

Question 6: 

Let X1,X2, . . .,X10 be a random sample of size n = 10 from a gamma 

distribution with α = 3 and β = 1/θ. Suppose we believe that θ has a gamma 

distribution with α = 77 and β = 91. 

(a) Find the posterior distribution of θ. 

(b) If the observed x = 18.2, what is the Bayes point estimate associated with 

square-error loss function? 

(c) What is the Bayes point estimate using the mode of the posterior distribution? 

Hint: Can the posterior distribution be related to a chi-square distribution? 

Let 𝑋1, 𝑋2, …, 𝑋10 be a random sample from a gamma distribution with 𝛼=3 and 𝛽=1/𝜃. Suppose we believe 

that 𝜃 follows a gamma-distribution with α = 77 and β = 91 and suppose we have a trial (𝑥1,…,𝑥𝑛) with an 

observed 𝑥̅=62.88.  

a) Find the posterior distribution of 𝜃.  

b) What is the Bayes point estimate of 𝜃 associated with the square-error loss function?  

c) What is the Bayes point estimate of 𝜃 using the mode of the posterior distribution?  

https://www.scielo.br/j/aabc/a/FptKv7xMmRC3BjsVbSsMDkv/?format=pdf&lang=en 

https://michael-franke.github.io/intro-data-analysis/ch-03-03-estimation-bayes.html# 

https://math.stackexchange.com/questions/3992755/posterior-for-gamma-prior-and-gamma-

likelihood-with-known-shape. 

 

Solution: 

The observed data 𝑋𝑖has a gamma distribution with the shape parameter 𝛼 > 0 and an (inverse) 

scale parameter 𝛽 > 0, 𝑎𝑛𝑑 𝜃 =  
1

𝛽
. The Gamma density can be written as follows: 

𝑓(𝑥|𝛼, 𝛽) =
1

Γ(𝛼)𝛽𝛼
𝑥𝛼−1𝑒−𝑥 𝛽⁄  ; 𝑥 > 0. Here Γ(𝛼) is the gamma function. 

Thus, the likelihood of the observed data is  

𝑃(𝑋|𝜃) = ℒ(𝑥1, 𝑥1, … 𝑥1|𝜃) = 𝑃(𝑥1|𝜃)𝑃(𝑥2|𝜃)…𝑃(𝑥𝑛|𝜃) 

https://math.stackexchange.com/questions/4303041/derive-bayes-estimator-with-a-gamma-prior
https://michael-franke.github.io/intro-data-analysis/ch-03-03-estimation-bayes.html
https://math.stackexchange.com/questions/3992755/posterior-for-gamma-prior-and-gamma-likelihood-with-known-shape
https://math.stackexchange.com/questions/3992755/posterior-for-gamma-prior-and-gamma-likelihood-with-known-shape


 

 

𝜃𝑛𝛼

(Γ(𝛼))
𝑛 𝑒

−𝜃∑ 𝑥𝑖
𝑛
𝑖=1 (∏ 𝑥𝑖

𝑛

𝑖
)
𝛼−1

 

The prior pdf 𝜃 is a gamma distribution given by  

𝑃(𝜃) =
𝜃(𝛼−1) 𝑒−𝜃 𝛽⁄

Γ(𝛼)𝛽𝛼
 

The equation used for Bayesian estimation takes on the same form as bayes theorem. 

𝑃(𝜃|𝑋) =  
𝑃(𝑋|𝜃)𝑃(𝜃)

∫ 𝑃(𝑋|𝜃)𝑃(𝜃)𝑑𝜃
∞

0

 

Where 𝑃(𝜃|𝑋) the posterior distribution, 𝑃(𝑋|𝜃)  the likelihood function, and 𝑃(𝜃) the prior 

distribution. 

Hence,  

𝑃(𝜃|𝑋) =  

𝜃𝑛𝛼

(Γ(𝛼))
𝑛 𝑒

−𝜃∑ 𝑥𝑖
𝑛
𝑖=1 (∏ 𝑥𝑖

𝑛
𝑖 )𝛼−1 ∗ 

𝜃(𝛼−1) 𝑒−𝜃 𝛽⁄

Γ(𝛼)𝛽𝛼

∫ (
𝜃𝑛𝛼

(Γ(𝛼))
𝑛 𝑒

−𝜃∑ 𝑥𝑖
𝑛
𝑖=1 (∏ 𝑥𝑖

𝑛
𝑖 )

𝛼−1
∗  
𝜃(𝛼−1) 𝑒−𝜃 𝛽⁄

Γ(𝛼)𝛽𝛼
)𝑑𝜃

∞

0

 

By definition, 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝑃𝑟𝑖𝑜𝑟 ∗ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 and wasting away any quantity not 

depending on θ thus 

𝑃(𝜃|𝑋)  ∝  𝜃𝑛𝛼𝑒−𝜃∑ 𝑥𝑖
𝑛
𝑖=1 ∗ 𝜃(𝛼−1) 𝑒−𝜃 𝛽⁄  

= 𝜃𝑛𝛼𝑒−𝜃∑ 𝑥𝑖
𝑛
𝑖=1 ∗  𝜃(𝛼−1) 𝑒−𝜃 𝛽⁄  

=  𝜃30𝑒−𝜃∑ 𝑥𝑖
𝑛
𝑖=1 ∗  𝜃76 𝑒−𝜃 91⁄  

Therefore 𝑃(𝜃|𝑋)  ∝  𝜃106 ∗ 𝑒−𝜃(
1

91
+∑ 𝑥𝑖

𝑛
𝑖=1 )

 

Now, comparing the above expression with Gamma (α, 𝛽) distribution’s PDF, we immediately 

recognize that the posterior is a Gamma[107; 
1

1

91
+∑ 𝑥𝑖

𝑛
𝑖=1

] 

The Bayes point estimate associated with the square-error loss function is the posterior mean: 



 

 

𝜃 =  Ε[𝜃|𝑋] =  𝛼𝛽 =  
107

1
91
+ ∑ 𝑥𝑖

𝑛
𝑖=1

 

Since 𝑥̅ = 18.2, then ∑ 𝑥𝑖
𝑛
𝑖=1  ≅ 𝑛𝑥̅ = 10 ∗ 18.2 = 182 

Finally the desired point estimate is  

Ε[𝜃|𝑋] =  
107

1
91
+ 182

 

the Bayes point estimate of 𝜃 using the mode of the posterior distribution is given by: The mode of the 

posterior distribution is a value which maximizes the posterior density function. 

 

𝜃𝑚𝑎𝑥 = (𝛼 − 1)𝛽 = 
106

1

91
+∑ 𝑥𝑖

𝑛
𝑖=1

 

 

 



 

 

 

 


