Calibration Of Pedestrian Sizes In Decision-Based Modelling

Jana Vacková, Marek Bukáček

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

September 2022

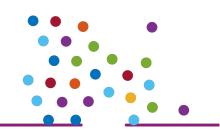
Katedra matematiky FJFI ČVUT v Praze

Content

- Decision-based Model and Pedestrian Sizes
- Calibration Concept
- Experimental Data
- Calibration Episode

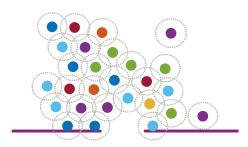
Decision-based Model and Pedestrian Sizes - Definition

- Pedestrian reduces their initial size until the physical size is fulfilled
- Their sizes are reduced only to themselves - they see each other still at the initial size
- Initial size s > 0
- Physical size $\tau_s > 0$
- Social size $s_{\alpha}(t) > 0$ of the pedestrian \Rightarrow social compression
- $0 < \tau_s \le s_\alpha(t) \le s$
- Not allowed to expand again



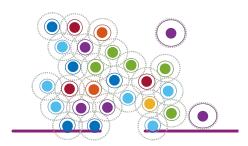
Decision-based Model and Pedestrian Sizes - Definition

- Pedestrian reduces their initial size until the physical size is fulfilled
- Their sizes are reduced only to themselves - they see each other still at the initial size
- Initial size s > 0
- Physical size $\tau_s > 0$
- Social size $s_{\alpha}(t) > 0$ of the pedestrian \Rightarrow social compression
- $0 < \tau_s \le s_\alpha(t) \le s$
- Not allowed to expand again



Decision-based Model and Pedestrian Sizes - Definition

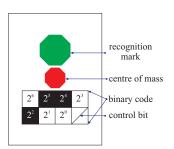
- Pedestrian reduces their initial size until the physical size is fulfilled
- Their sizes are reduced only to themselves - they see each other still at the initial size
- Initial size s > 0
- Physical size $\tau_s > 0$
- Social size $s_{\alpha}(t) > 0$ of the pedestrian \Rightarrow social compression
- $0 < \tau_s \le s_\alpha(t) \le s$
- Not allowed to expand again



Calibration Concept

- Consists of separate calibration episodes
- Every of them covers one type of pedestrian behaviour captured by (one or several) model parameters
- Calibration quantities
- Episode test is needed

Experimental Data

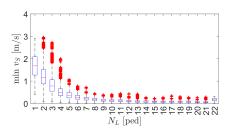


- Study hall of our faculty
- Artificial room with one exit
- Three entrances
- Three cameras
- Recognition caps
- 10 runs

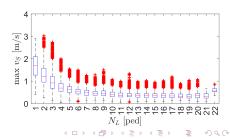
Calibration Episode - Calibration Quantities

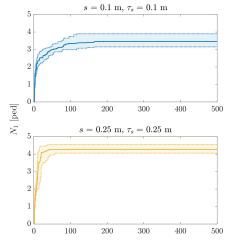
- Need to capture two different modes: free flow and congestion
- Small rectangular detector S =at the exit area
- Large rectangular detector L = whole room
- Conditions in S with the help of conditions in L
- Smooth number of pedestrians (kernel estimate): $N_{S,L} \in \mathbb{R}^+$

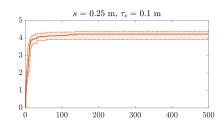
$$N_1 := \max_{t \in \mathsf{R}^+} \left\{ N_S(t) | N_L(t) \le 8 \right\},$$



$$N_2 := \max_{t \in \mathbb{R}^+} \{ N_S(t) | N_L(t) > 18 \}$$







 $t_{\rm stop}$ [s]

- Maximum (needed) experimental time t_{stop}
- Our stationary value $N_i^S := N_i(t = 500)$
- Relative error

$$t_{\mathsf{stop}}^{(i)} := \min \left\{ t \in \mathsf{R}^+ : \frac{\left| N_i(t) - N_i^{\mathsf{S}} \right|}{N_i^{\mathsf{S}}} \le \varepsilon
ight\}$$

- ullet Maximum (needed) experimental time $t_{
 m stop}$
- Our stationary value $N_i^S := N_i(t = 500)$
- Relative error

$$t_{ ext{stop}}^{(i)} := \min \left\{ t \in \mathsf{R}^+ : rac{\left| \mathit{N}_i(t) - \mathit{N}_i^{\mathsf{S}}
ight|}{\mathit{N}_i^{\mathsf{S}}} \leq arepsilon
ight\}$$

-	s [m]	$ au_{s}$ [m]	$t_{\sf stop}^{(1)}$ [s]	$t_{\text{stop}}^{(2)}$ [s]
PS1	0.10	0.10	82.20	-
PS2	0.25	0.10	31.85	136.40
PS3	0.25	0.25	32.70	36.50

- Maximum (needed) experimental time t_{stop}
- Our stationary value $N_i^S := N_i(t = 500)$
- Relative error

$$t_{\mathsf{stop}}^{(i)} := \min \left\{ t \in \mathsf{R}^+ : \frac{\left| N_i(t) - N_i^{\mathsf{S}} \right|}{N_i^{\mathsf{S}}} \le \varepsilon
ight\}$$

_	s [m]	τ_s [m]	$t_{\sf stop}^{(1)}$ [s]	$t_{\text{stop}}^{(2)}$ [s]
PS1	0.10	0.10	82.20	-
PS2	0.25	0.10	31.85	136.40
PS3	0.25	0.25	32.70	36.50

• Final value of t_{stop} can be defined as

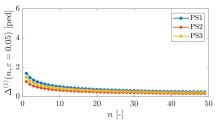
$$t_{\mathsf{stop}} := \left[\max_{i \in \{1,2\}} \max_{j \in \{1,2,3\}} t_{\mathsf{stop}}^{(i)}(j) \cdot \frac{1}{100} \right] \cdot 100$$

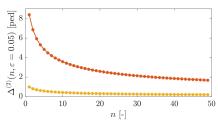
• $t_{stop} = 200 \text{ s}$

Calibration Episode - Number of Iterations

Chebyshev's inequality

$$\mathbb{P}\left[|\overline{\xi} - \mu| < \Delta(n, \varepsilon)\right] \geq 1 - \varepsilon, \text{ where } \Delta(n, \varepsilon) = \frac{\sqrt{\mathsf{Var}\left(\xi\right)}}{\sqrt{n\varepsilon}}$$

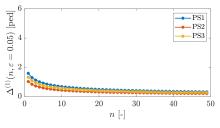


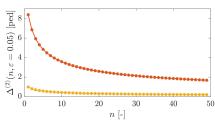


Calibration Episode - Number of Iterations

Chebyshev's inequality

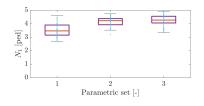
$$\mathbb{P}\left[|\overline{\xi} - \mu| < \Delta(n, \varepsilon)\right] \geq 1 - \varepsilon, \text{ where } \Delta(n, \varepsilon) = \frac{\sqrt{\mathsf{Var}\left(\xi\right)}}{\sqrt{n\varepsilon}}$$

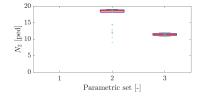




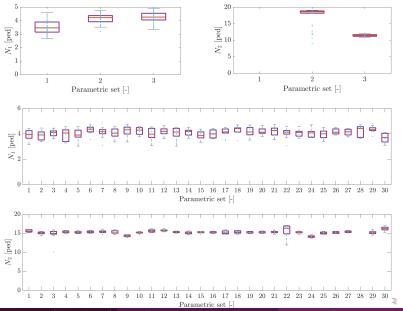
-	$\Delta^{(1)}(n,arepsilon)$			$\Delta^{(2)}(n,\varepsilon)$						
n [-]	10	20	30	40	50	10	20	30	40	50
PS1	0.71	0.50	0.41	0.36	0.32	-	-	-	-	-
PS2	0.46	0.33	0.27	0.23	0.21	3.75	2.65	2.17	1.88	1.68
PS3	0.59	0.42	0.34	0.30	0.27	0.44	0.31	0.26	0.22	0.20

Calibration Episode - Test of Episode - Change?





Calibration Episode - Test of Episode - Change?



Calibration Episode - Perform of Episode

Hypothesis testing

- ullet For each parametric set $j\in \mathbb{N}\colon$ $H_0:$ $\mu_j=\mu_E$ vs. $H_1:$ $\mu_j
 eq\mu_E,$
- Multivariate James' test

$$\mathcal{T} := (\boldsymbol{\mu}_j - \boldsymbol{\mu}_E)' \left(rac{1}{n_1} \boldsymbol{S}_j + rac{1}{n_2} \boldsymbol{S}_E
ight)^{-1} (\boldsymbol{\mu}_j - \boldsymbol{\mu}_E),$$

where S_j , S_E are estimates of covariance matrices

- ullet Approximately distributed as $T\sim\chi_2^2$ when H_0 is true
- Assumption: normally distributed data
- Fixed significance level $\alpha = 0.05$
- \bullet Optimum set = p-value greater than α

Calibration Episode - Perform of Episode

Hypothesis testing

- ullet For each parametric set $j\in \mathbb{N}\colon$ $H_0:$ $\mu_j=\mu_E$ vs. $H_1:$ $\mu_j
 eq\mu_E,$
- Multivariate James' test

$$\mathcal{T} := (oldsymbol{\mu}_j - oldsymbol{\mu}_E)' \left(rac{1}{n_1} oldsymbol{S}_j + rac{1}{n_2} oldsymbol{S}_E
ight)^{-1} ig(oldsymbol{\mu}_j - oldsymbol{\mu}_Eig),$$

where S_j , S_E are estimates of covariance matrices

- ullet Approximately distributed as $T\sim\chi_2^2$ when H_0 is true
- Assumption: normally distributed data
- Fixed significance level $\alpha = 0.05$
- ullet Optimum set = p-value greater than lpha

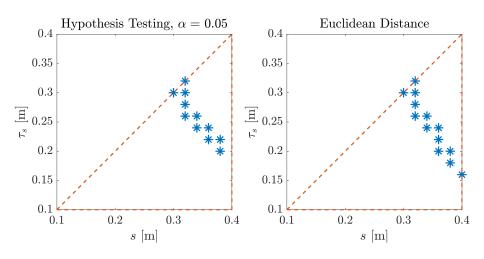
Minimization of Euclidean distance

- Finding a minimum of an objective (error) function
- For each parametric set $j \in \mathbb{N}$:

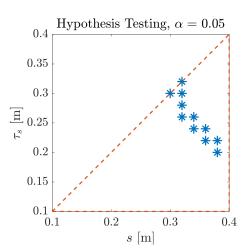
$$\operatorname{error}(j) = \sqrt{(\overline{N}_{1,j} - N_1^E)^2 + (\overline{N}_{2,j} - N_2^E)^2}$$

- Weakness: does not work with variance
- \bullet Optimum set = top 10 % with the smallest deviations

Calibration Episode - Results



Calibration Episode - Results



j [-]	<i>s</i> [m]	τ_s [m]	p-value [-]
87	0.34	0.26	0.62
75	0.32	0.26	0.53
86	0.34	0.24	0.44
99	0.36	0.24	0.33
111	0.38	0.20	0.30
76	0.32	0.28	0.21
78	0.32	0.32	0.17
98	0.36	0.22	0.15
77	0.32	0.30	0.15
66	0.30	0.30	0.15
112	0.38	0.22	0.10

Conclusions

- Concept of separate calibration episodes
- Design of episode
- Set-up of episode properties
- Statistical approach brings many benefits

Thank you for your attention.