Speaker
Buck Christian
(Google)
Description
We analyze the language learned by an agent trained with reinforcement learning as a component of the ActiveQA system [Buck et al., 2017]. In ActiveQA, question answering is framed as a reinforcement learning task in which an agent sits between the user and a black box question-answering system. The agent learns to reformulate the user's questions to elicit the optimal answers. It probes the system with many versions of a question that are generated via a sequence-to-sequence question reformulation model, then aggregates the returned evidence to find the best answer.
Author
Buck Christian
(Google)