21–24 Feb 2018
Bonn
Europe/Zurich timezone

This is a sandbox server intended for trying out Indico. It should not be used for real events and any events on this instance may be deleted without notice.

Deep Convolutional Neural Network for Image Deconvolution

Not scheduled
15m
50 (Bonn)

50

Bonn

Speaker

Ms Xu Li (Lenovo Research Technology)

Description

Many fundamental image-related problems involve deconvolution operators. Real blur degradation seldom complies with an ideal linear convolution model due to camera noise, saturation, image compression, to name a few. Instead of perfectly modeling outliers, which is rather challenging from a generative model perspective, we develop a deep convolutional neural network to capture the characteristics of degradation. We note directly applying existing deep neural networks does not produce reasonable results. Our solution is to establish the connection between traditional optimization-based schemes and a neural network architecture where a novel, separable structure is introduced as a reliable support for robust deconvolution against artifacts. Our network contains two submodules, both trained in a supervised manner with proper initialization. They yield decent performance on non-blind image deconvolution compared to previous generative-model based methods.

Author

Ms Xu Li (Lenovo Research Technology)

Presentation materials

There are no materials yet.