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EDUCATION AND RESEARCH
Knowledge and Training at CMRP

W

70% of medical physicists
in NSW were trained at CMRP

Currently studying at CMRP:
30 PhD students
15 Masters (Research) students

Approx. 120 undergraduate/year
enrolled
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Centre For Medical Radiation Physics

 Research strength of the UOW

UOW academics awarded cancer patent

By LISA WACHSMUTH Sept 29, 2012, 4:03 am.

« Strongcommercial outcome is expected
from Research Strengths @ UOW!

Electrogenics Laboratories Ltd :;))

World Breakthrough Patented Radiation Dosimetry ! X \
Electrogenics Laboratories Limited (“ELL") or (the Company) has a worldwide exclusive license from the University of ELECTROGENICS LABS . ° I 1

Wollongong (UoW) for the MOSkin sensor technology. The MOSkin technology was developed by a team at UoW led
by Professor Anatoly Rozenfeld, who is regarded as a leading expert in the field. MOSkin technology, among otherthmgs claims to be the only sensor technology Uniiver; , Mdico Pe with the radiation
that can measure radiation dosage compliant -+ +t - t4/7 stomdomd This oo o in smmmils - el s ek o b mson s s b e P s e s ok e detector which is .

years and, thereafter, will most likely be adop

The MOSkin technology will be incorporated i
technology can also be built into machines m,

ELL believes the MOSkin technology and resu
appoint an Australian manufacturer and proc
accreditations as well.

As a Class 2 Non-invasive medical device, the
engaged a specialist company Brandwood CK

Series A Raise

The Company is offering a limited opportunit

» Raise amount:- AUD$ 1.5 million with th
 Price per-share:-AUD$0.09c (9 cents per
* Pre Money Valuation $ 9.6 Million

» This Offer is open to Sophisticated S 70!
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Dosimetry?

» Radiation dosimetry is the measure of the
effect of radiation on matter

» Radiation dosimetry is used in many fields,
including
o Radiation therapy
- Treatment verification
- Critical organ dose
o Diaghostic imaging
- Patient doses
- Operator doses
> Personnel monitoring
o Mining, nuclear industries ceneeror @
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Dosimetric Quantities

» There are many quantities used to describe
the effects of radiation on matter, including

> Fluence (@)

> Energy fluence (V)
o KERMA (K)

o Absorbed dose (D)
> Exposure (X)

> Quality factor (Q)

> Dose equivalent (H)

» Each quantity has a distinct purpose and
application in radiation dosimetry

CENTRE FOR .
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Fluence and Flux density

The fluence of a radiation field, @, is defined
as the number of particles, N, passing

through an area, a, in the limit that the area
is infinitesimally small

®=dN/da

Area, a

, = flux density, @,or fluence rate,

Number of

mea o = do/dt = d/dt(dN/da)
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Energy fluence

» Energy fluence, vy, is similar to fluence,
however, the energies of the incident particles
are considered

» The energy fluence is defined as the total
kinetic energy, R, incident on an infinitesimally
small area, a

\IJ — d R/da For monoenergetic particles of energy E
R=E-N

Y=E-O
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How radiation interacts with matter?

» lonisation/Excitation are the main processes of radiation
Interaction

» lonisation can be DIRECT or INDIRECT:

> Photons, neutrons generate ionization by indirect processes:

Uncharged particles liberate a charged particle which produces Coulomb
interactions

- Electrons and protons generate ionization by direct processes by
producing a Coulomb interaction with the atoms of the material.

CENTREFOR @@
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Photons interact with matter through

> Photoelectric effect

releases100% of original photon energy
o Compton scattering

releases a fraction of original photon energy
> Coherent scattering

releases zero energy

o Pair production o ﬁ/‘/' P(X)

releases 100% of original photon energy —% = B

Produces electron-positron pair : i PO)=XP(=pX)
> Photonuclear interactions PR—

releases 100% of original photon energy Where u is the linear attenuation coefficient (m-')

i/p is the mass attenuation coefficient (m<kg-')

T is the photoelectric effect
Oeoon  Oc K Seoh is coherent scattering
-+ -+ + — oc is the Compton effect

T
P P P P K is pair production CENTREFOR @@
, — MEDICAL e
—— RADIATION PHYSICS ¢
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Charged particles interact with matter
through collisional and radiative interactions

» Collisional interactions
> Involve inelastic collisions with atomic electrons

> Result in excitation or ionisation » E — l(d_E) + l(d_E)
» Radiative interactions p p\dlj, —p\dlj .

> lnvolve inelastic collisions with an atomic nucleus

> Energy emitted in the form of photons
(Bremsstrahlung)

» Energy is lost relative to the mass stopping power

S 1 dE
—_— e —— 2 -1
> pdl(Jmkg)

Where dE is the energy lost after traversing a
B distance d/
.. 2 e




Lineal Energy Transfer (LET)

» LET is the measure of the local energy
deposition along the track of a charged particle

» Is equivalent to the stopping power, S, when
radiative energy loss is excluded

How Is the Alpha particle LET in comparison )
to an electron? e (@) eedTitioer vevene




I
e T —
n

X (column number)

X (column number)

65709

X (column number)

65.709




Energy transferred and imparted

Through interactions, energy may be deposited
to the medium

The energy deposited in a single interaction is
given by

€=8€pn,~ oy T Q ) = Zi €; Energy Imparted

Mean Energy Imparted or Energy Deposited, include all the contributions

of radiative energies: _
€ = Rin — Roye + 20

Where R, is the incoming radiation
R, 1S the outgoing radiation

_ Q is the total change in rest mass MEDICAL &
RADIATION PHYSICS ¢



Examples: Compton scattering

Energy transferred v,
Etr — hV] - th — T

Energy deposited
€ =E€jn~ Eour T 20

EEEEEEEEE .
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Examples: Photoelectric effect

Energy transferred hv,

I

Energy deposited
€ =&~ oy T 4

EEEEEEEEE .
— MEDICAL &
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Absorbed dose

The energy deposited/imparted in a volume
per unit mass

de
D =—
dm

with € the mean imparted energy as defined previously

Has units of Gray (Gy) or J/kg

EEEEEEEEE .
— MEDICAL @
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Basic concepts in DOSIMETRY
» Charge particle equilibrium (CPE)

» Charged particles are liberated through
interactions of photons with matter

» The total charge liberated in a volume is

based on photons ’
photons 1 V >

1. Crossers > >

2. Stoppers . :

2. ISta.I’(;erS - > Charged particles

. Insiders

2

Charged partic ete i ' '
arged paricies CPE exists if every charged particle leaving the

volume is replaced by a charged particle of the
same type, energy and direction entering the
volume
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Dose is defined for all types of radiation

- For mono-energetic photons, assuming charged
particle equilibrium

D =ddE&Een
P

Where p,,,/p is the mass absorption cross section
(m?kg~")
o For charged particles
D =dd Sel

Where S,,/p is the collision stopping power Jm?kg™")  _...cren
MEDICAL e
\ RADIATION PHYSICS



Dose to air is particularly important!

Air ionisation per unit mass

dQ
X ==
am
Where Q is the absolute value of the total

charge of the ions of one sign produced in
air when all of the electrons or positrons
liberated or created by photons in air are
completely stopped
Units of Ckg~' or R (Roentgen)
1C/kg=3876R
D . = W air X
alr e
Where W,;, is the mean energy expended in air
per electron-ion pair formed

e is the elementary charge

— W, /e = 33.97 J/C independent on photon
| energy




Cavity Theory

When the cavity is absent, the dose to the same
location in the medium X is

dT
D,=® (—) » The relationship between the dose deposited
pax/ o1 in the medium and the cavity is dependent on
the stopping power relationship

» Holds true if
o The deposited doses are due to charged particles

X

Thus, the dose relationship is

D (d_T) > The fluence does not change over the cavity
&_ Xpdx col _X(dT)
Dk o ( ddT ) A pdx ol
k pax col

B | he Bragg-Gray cavity relation
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Dose is a theoretical quantity defined only for
MANY interactions

» Absorbed dose, as opposed to the specific
energy imparted, z = ¢/,,, is a theoretical

concept in the limit that the volume and mass
approach zero

Imparted Energy | Absorbed Dose

Stochastic Non-stochastic
No gradient Gradient dD/dx l N
No rate Rate D/dt | l

Log m ==

- Finite mass Point quantity
: “Concepts of Radiation e @
. Measurable Theoretical Dosimetry”, SLAC-153 CAL $



Conclusions...

» The fundamental quantity in radiation
dosimetry is absorbed dose, D

» D only has meaning if the energy deposition
Is due to many interactions

» Under charged particle equilibrium (CPE),
absorbed dose is described by a field quantity
and an interaction coefficient

» Under certain conditions, absorbed dose may
be approximated by KERMA, which is easier
to evaluate

EEEEEEEEE ®
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Dose should always be specified in the
medium/material, e.q.

> Dose to air
o Dose to water
> Dose to tissue

How much is 1 Gray?

o LD50, the lethal dose to kill 50% of the population,
is ~5Qy (total body, photons, short time interval)

o 5Gy to water will raise the temperature by 0.0012°C
> The yearly background radiation dose is ~2mGQy

EEEEEEEEE ®
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Modern RT Delivery

» Use of immobilization frames presents
significant disadvantages (discomfort,
cost, inability to fractionate treatment)

» Leading to advent of “frameless” high
precisionimage guided radiotherapy also
referred to as Stereotactic Radiosurgery

» Beam collimation can be achieved by:
o Stereotactic cones, or
- High-definition MLCs

» Commercially available treatment suites
from:

- Brainlab - Novalis, ExacTrac, Vero systems
> Accuracy - CyberKnife Robotic Radiosurgery

> LINAC based - from Varian (Trilogy, Truebeam,
Edge), Elekta (Synergy, Axesse) and Siemens
(Artiste)




Semiconductor Dosimetry

» When radiation is incident on a detector
- Energy may be transferred to the detector

- The energy of the incoming particle may be wholly or partially
deposited within the detector

» How can we measure this energy?
» How is this related to dose?

CENTREFOR @)
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Semiconductor Dosimetry

> lonising radiation loses energy within a medium
by
lonising the atoms within the medium
Inducing positive and negative charges
> For a fixed medium, the number of free charges
is proportional to the energy deposited

- How can we measure these free charges?

CENTREFOR @@
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Semiconductor Dosimetry

- By applying an electric field
Free charges will migrate in the field
A current will be induced > Ramo’s effect
The amount of collected charge will be proportional to
the deposited energy
The dose to the medium may be determined using the
Bragg-Gray cavity theory

CENTREFOR @@
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Semiconductors for Dosimetry

» Semiconductors are ideal as they
- Can operate with an internal electric field (diode)

- Have similar charge deposition within detector to
ionisation chambers in a much smaller device

18000 times sensitivity per unit volume

Smaller ionisation energy than ionisation chamber
(~3.6eV for Silicon, ~35eV for ionisation chamber)

- May be constructed with small volumes to
Provide high spatial resolution
Satisfy Bragg-Gray cavity theory
Use in confined spaces (in-vivo)
Use in multiple radiation fields

» The most USED material for semiconductor
dosimetry is silicon

CENTREFOR @@
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Advantages of Silicon

» Silicon has many advantages for dosimetry
- Relatively low cost to manufacture - till COVID happened, anyway ©
o Operation at room temperature
- Low power of operation
- Rapidly advancing technology

» Silicon is used in multiple types of radiation detectors,
including
- Diodes
- MOSFETSs
- PHOTODIODES for indirect detection

CENTREFOR @@
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Dosimetric Ratios of Silicon-to-Water

—r - ———— 1.34 - .

81 ] 4
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Ratio for Silicon to Water Ratio for Silicon to Water

- The energy response of Si detector which is satisfying B-G cavity theory and
placed in water will be relatively flat in a wide energy range

-Silicon is not water equivalent in free air geometry or in case of a range of
secondary electrons in Si is smaller than Si cavity

CENTREFOR @@
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Diode - Principle of Operation

Cxen. el The sensitivity of the

é %, é. diode, S, represents

— Vs the amount of charge

L) ] Y .
Electron(®, [_t 4 lef---O collected without
o ! Hole . .
: - recombinafion
Anode g B _,:'I"_E e Lo % o= fthoide
o | .0
- S =o(D1)?°
» * » L
T=x, =" x=0" X=x,
o _ ©=minorcharge carrier lifetime
— > Rodianon Current a=4.2x10"13x1.6x1017

=6.72x107 C/cGy/cm.
J Shi et al. Med. Phys. 30 (9), 2003, 2509-2519
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Diode Operation

» Important operational parameters are
o Sensitivity, S
- Dose rate dependence
- Response Temperature Instability (RTI), (dS/dT)
» Radiation damage stability (often Pre irradiation
improves sensitivity stability by stabilising life time)

5p by introduction of radiation defects N;,
T=1, 1+ — 1t decreases and injectiondependence
n, is simplified

RTI~N,

RTlI increases, dose rate effect is temperature independent and
sensitivity degradationis reduced through application

CENTREFOR @@
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Diode Dose Rate Dependence

1.04
1.02
1.00

gu.sﬂ -
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- e

0.92 ; . '
0 2000 4000 6000

8000

Instantanecus dose rate (cGy/s)

10000

AS Saini et al. Med. Phys. 29 (4), 2002,

- 622-630

Typical dose rates in LINAC
radiotherapy applications are
103-10% cGy/s

p-type diodes generally have
less dose rate dependence due
to different defect energy levels

In n-type diodes it is possible
to reduce the dose rate
dependence through Au or Pt
doping

Decreasing the silicon
resistivity will reduce the dose
rate dependence

CENTREFOR @@
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Typical commercial diode for RT e
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PACKAGING and ANGULAR DEPENDENCE
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Full text links

IOP Publishing

Phys Med Biol. 2010 Feb 21;55(4):N97-109. doi: 10.1088/0031-9155/55/4/N01. Epub 2010 Jan 20.

An in-house developed resettable MOSFET dosimeter for radiotherapy.
Verellen D', Van Vaerenbergh S, Tournel K, Heuninckx K, Joris L, Duchateau M, Linthout N, Gevaert T, Reynders T, Van de Vondel |, Coppens L, Depuydt T, S it
ave items

o g S = g

De Ridder M, Storme G.

Angular Dependence

(=Gy)

LTS | Technique | Journal | Year
r Phys Med 2010
Biology

MOSFET

Figure 6. Angular dependence assessed in a & MV photon beam by iradiating the MOSFET
detector at isocentre inside a cylindncal phantom for different ganiry incidences.
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International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 20186, 5, 26-32 ‘0:0 Scientific
Published Online February 2016 in SciRes. http://www.scirp.org/journal/iimpcero “20‘ gﬁgﬁgﬁﬂg
http://dx.doi.org/10.4236/ijmpcero.2016.51003 .

Small Volume lIonization Chambers
Angular Dependence and Its Influence
on Point-Dose Measurements

Jon Feldman?*Z, Itzhak Orion?
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o2 '_'_L.__._Lr_ﬁ ] lonising
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Figure 5. The PmPoint 1on chamber calculated response vs.
angular position usmg EGS5 simulations at 6 MV and 15 MV
All results are normalized to the response at 90°.
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UOW “EdQEIeSS d |0d esn: | Junctions and substrates code:

solution for angular independent D sabotiate
dosimetry

N+
-Four different geometries

P+
Aluminium

-2 different substrates

-2 different dimensions (0.5x0.5 mmA2 and 1x1 mmA2)

-2 different thicknesses (580 umi and 100 umj

Type Substrate | Top | Edge | Resistivity
Juncti | Juncti | (koHmM-cm)
on on
PN N P+ N+ 10 0.5x0.5/
1x1
NN N N+ P+ 10 0.5x0.5/
1x1
NP P N+ P+ 7 0.5x0.5/
1x1
PP p Pr N+ 7 0.5x0.5 / )

)
MRAUJIAIIVINIITTITOIVO @




Proposed method N

Use of a new technology named “Edgeless” developed by
VTT (Finland) for the Medipix CERN Collaboration (spin-
off of HEP detector development):

~.single pixel
read-oul cell

» Designed for “100% fill factor” imaging detector

fabrication for particle tracking

» Large area detector “tiled” with element of 14x14cm?

and 256x256 pixels/element (55um/pixel)

» Active pixels with electronic readout (full MCA chain
in 0.19um CMOS standard technology) bump-

bonded underneath the sensitive silicon substrate

manufactured by high resisitivity FZ silicon

CENTREFOR @@
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Active edge VTT technology

q) Anealling and edge oxidation

AAAAAAL
L

a) Phosphorus implantation

detector wafer
ox
h) Contact holes, Al
deposition and patterning

d) Oxide growth, lithagraphy,
etching and ion implantation

to form doped regions

e) ICP elching to reveal the

adge
%

b) Wafer bonding to the
oxdized support wafer

i) Removal of the support

wafer

f) Four-guadrant ion
imgantation to activate edges

c) Grinding and CMP
polishing of the detector wafer
o the final thickness

CENTRE FOR
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Edgeless diodes: packaging and basic dosimetry for EBRT
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Tissue-Phantom Ratio (TPR) on Cyberknife

» Both experiments (in G4 and M6 machines) were 100 s m Edgeless
performed using large size (60 cm3) MP3 motorized | . s FIVeI0I6
water tank (PTW). o :

@ 80-
o ® .
» Measurement depth: : 0, 3,5, 8,10, 13, 15, 20, 30, @ -
50, 100, 150 and 200 mm. = 60+ 8
=
E ® [ ]

» diodes attached to bird cage in order to align them @ 40 -
in radiation center.

20 T * T T T T

» 3 differentIRIS and cone field sizes: 10, 30, 60 mm. 0 50 100 150 200

Depth (mm)

Fig.10: M6 Cyberknife (Perth),15 mm depth,800 SAD mm, cone 60 mm.

» The edgeless diodes measurements were compared : : : . ! : , . ,

with PTW 60016 and PTW 60018 diodes. 100 - -
™ [ ] = Edgeless
. o e PTW60016
@
% 804 ®
w o o
2 g "
2 .
Ic
€ 404 o b
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nrs
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Angular dependence: Exp on VARIAN ClinacXi.
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Fic. 9. Angular dependence of P-type substrate devices.
Angular independent silicon detector for dosimetry in external beam radiotherapy
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MOSFET: Principles of Operation

Dirain

(Jate

MH S

., ||| o o o o

2

—OLC e

Induced n-type channel

petype 51 subistrate

Passive mode - AV, ~ 0.0022 D%4t 2 f

Active mode - AV, ~ 0.04 Dt A2f

» Generation of
electron-hole pairs in
silicon oxide by
ionising radiation

» Trapping of holes on
the SiO,-Si interface

» Shift in the IV
characteristics leads
to a change in the
threshold voltage
under constant
channel current

Active mode has a positive bias on the gate during operation

i
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TOTAL DOSE EFFECTS (TID) on MOSFETSs:
Voltage threshold shifting
Parasitic

TID in MOS structures

Parasitic
channel

Bird’s beak

Trapped
positive
charge

Interface states
Can trap both e~ and h*

Before
Trapped charge
ALWAYS POSITIVE!

irradiation
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MOSFET: Principles of Operation

» Generation of electron-hole pairs in silicon oxide by

ionising radiation

» Trapping of holes on the SiO,-Si interface

» Shift in the IV characteristics leads to a change in the
threshold voltage under constant channel current

Source

Gate
i0; Border Drain
Trap

t+++++++++
t++++++++rtttErt+ 4
Induced p-type channel

n-type Si substrate

I I Substrate

AE. =1.5/1 eV

p-channel MOSFET band structure
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MOSFET: Principles of Operation

» The threshold voltage is the voltage required to pass a set
current through the channel

» After irradiation, this threshold voltage shifts proportional to
the dose absorbed by the SiO, gate

irradiated

AV, ~AD in SiO,
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MOSFET Chips

Advantage of MOSFET
P detectors-Extremely thin
sensifive volume (<1um)

Quadruple MOSFET detector
RADFET REM Oxford

WDh= 33 mn E.M. Unit Wollongong
Photo No.=2 Detector= SE1

Sinle MOSFET detector
CMRP MOSFET
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MOSFET Dosimeiry System

20 years later....

MOSFET Research Prototype

Dosimetry System (" vosimsensors [ moscmrb ) ( MOk Reader )

Reusable build-ups

No/\




New MO Sk/nDesign

» The Centre of Medical Radiation Physics (CMRP) has designed a new
MOSFET-based dosimeter called the MO Skin™.

» The new MOSkindetector

1) Incorporates a single MOSFET sensor.
2) |s temperature independent.
3) Used in either passive or active mode.

4) Has a highly reproducible build-up layer, capable of measuring
skin dose according to the ICRP 1992 recommendations (0.07
mm basal layer depth)

Build-up layer

Epoxy bubble MOSFET MO Skin
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MO Skindetector: Water Equivalent Depth and Surface angqular dose
distribution

Monte Carlo vs Experiment 50%
110 + S — ———— ] ———t . /
& MOSkin 10x10 . /

100 T m moskin 5x5 I \ 30%
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[ ——DOSXYZ 10x10 ] g

80 £

r  ——DOSXYZ 5x5
= [0OSXYZ 2.5%2.5

70 £

-100 -50 0 50 100
Angle (°)

E_ o=[MOSkin ==m@==Bubble x Attix Chamber

MQOSkin vs MOSFET and ATTIX
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MO Skin detector: comparison with ATTIX IC

Percentage depth doses (PDD)
measured with the MOSkin™
detector and the Attix chamber,
respectively, at the phantom
surface for both normal and

oblique incident beams.
Incident angle (°) 0 30 60 75
MOSkin (%) 19.49+1.7%  21.4241.6%  28.51+1.7%  37.98+1.7%
Attix chamber (%) 18.95%10.03 20.8%/?0.03 26.8%/?:0.03 35.92020.02

Normalized ratio 1.000 1.000 1.031 1.028

The Attix chamber measured a PDD of 16%

The MOSKkin reported a mean PDD of 18.3
+ 0.7%, while the epoxy bubble MOSFET
detector measured 36.3 = 1.5%.

e

% Dose
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100
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5x5 cm field, 6 MV

O MOSKin
—e— Monte Carlo
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Conclusions

» lonisation chambers are the gold standard for basic dosimetry
in radiotherapy

» Advanced radiotherapy modalities requires advanced radiation
sensors able to answer to challenging conditions:
> Low angular dependence,
o Extremely thin sensitive volumes
- Realtime and correction free response

» Semiconductor dosimeters can answer to those challenges by
design and development of specialized sensors.

» Although, road to clinical/commercial success is LONG and
quite difficult, but certainly doable.
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