

ALMA MATER STUDIORUM Università di Bologna

SUMMER SCHOOL on PHYSICAL SENSING & PROCESSING

Organic Optoelectronic Devices in a Smart-Integrated Miniaturized System for Optical Biosensing

Stefano Toffanin

Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) Consiglio Nazionale delle Ricerche (CNR)

stefano.toffanin@cnr.it

Bologna, 20-07-2023

Organic/Hybrid Photonics @ CNR-ISMN

- Flexible organic light-emitting devices Ο
- Organic photovoltaics Ο
- Multifunctional organic transistors Ο
- 2D materials: functionalization Ο
- Organic bioelectronics Ο

Integrable Organic-Hybrid Photonic Structure

- Bioderived polymer for sensing Ο
- Integrated systems for point-of-need 0

Free-standing keratin biosensor

Flexible transparent heteroiunction OPV

Integrated organic system for cell stimulation and recording

Epitaxial growth of organic moieties onto phosphorene

What/How?

Definition of innovative device schemes integrating several functionalities (magnetic, electrical, photonic, biological) in organichybrid systems

Facility for flexible large area electronics 100-class 80 m² clean-room

Fabrication of organic-hybrid components and systems

- Physical techniques: Vacuum sublimation, e-guns, pulsed plasma, ...
- Wet techniques: Spin-coating, Doctor Blade, Slot dye,...
- UV/e-beam lithography facility and nanoimprint system

Multi-scale characterization for device engineering

- Photo-physical processes (nm-scale)
- Long-range morphology and structure (µm-scale)
- Working device optoelectronic simulation (*cm-scale*)

Advanced characterization in hybrid optoelectronics

Confocal photoluminescence electro-modulation microscopy on biased optoelectronic organic devices with 300 nm lateral spatial resolution 2 ps time resolution and temperature control in the range 4-300 K

Mapping of charge density in organic thin-film transistor

W.A.W Koopman Nano Lett. 2014, 14, 1695–1700

Molecular organization for multifunctionality in organics

Packing force: weakly Van der Walls force

Charge carriers transport/recombination

Semiconductor polycrystalline thin-film

Locally-ordered molecular domains

Organic field-effect transistors as truly interface devices

OLET vs OLED

 $E_{field} \sim 10^4 \text{ V/cm}$

HORIZONTAL TRANSPORT GEOMETRY

FIELD-EFFECT CHARGE TRANSPORT

 $E_{field} \sim 10^6 \text{ V/cm}$

VERTICAL TRANSPORT GEOMETRY

BULK CHARGE TRANSPORT

- Higher brightness
- Higher and balanced charge mobility (10⁻¹ vs 10⁻⁴)
- Higher current densities (10 vs 10⁻³)
- o Less manufacturing

OLET as high-integration ICT component

OLED pixel scheme

OLET figures of merit: state of the art

Adv. Mater. 2012, 24, 2728

Adv. Funct. Mater. 2009, 19, 1728–1735

OLET figures of merit: state of the art

Brightness

Form factor in OLETs!

ACS Nano 7, 2344–2351, 2013

Colour palette and purity

Emission	Emissive materials	Emission peak [λ]	Full Width at Half Maximum
Blue	DiPAXA	485 nm	≈ 35 nm
Green	TCTA:Ir(ppy) ₃	520 nm	≈ 40 nm
Red	Alq ₃ :lr(piq) ₃	626 nm	≈ 50 nm
Red	Alq ₃ :PtOEP	650 nm	≈ 10 nm
Red-NIR	Pt(pfrpz) ₂	740 nm	≈ 65 nm
Red-NIR	Alq ₃ :Pt(tpbp)	770 nm	≈ 20 nm

Organic optoelectronics in analytical monitoring

Khan et al, IEEE access 2019, 7,

Kamada, et al. J. Soc. Inf. Display, 2019, 1.

Lochner et al, Nat .Comm. 2014, 5, 5745

Organic optoelectronics

- Materials tunability & versatility
- Nanometer-thick films
- o Large area
- Low cost
- Flexible and light-weight devices

o Integrability

Toffanin S. et al. Nanomaterials 2020, 10(3), 480; https://doi.org/10.3390/nano10030480

Multiplex phOtonic sensor for pLasmonic-based Online detection of contaminants in milK

PROJECT DETAILS

PROJECT REFERENCE: 780839
START/END: Jan 2018 – March 2022
TOTAL COST: EUR 6,036,381.25
EU CONTRIBUTION: EUR 5,479,159
TOPIC: ICT-30-2017 Photonics KET 2017

Safety and competitiveness in the dairy chain

To be used in strategic checkpoints along the entire supply and value chain of milk

Use cases: in-field validation

- □ To diagnose the level of contaminants at the earliest in the supply chain
- To implement modernized risk management framework
- Different checkpoints of the milk chain by a single analytical instrument

parmalat

Primary producers (farmers)

Self-monitoring by food business operators

MOLØKO

Tech building-blocks

Continuous, autonomous, on-site, multiplexing analytical instrumentation

Surface Plasmonic Resonance (SPR) detection scheme based on immunoassays:

- o routine and multiplexing method
- o robust and quantitative results
- o high specificity
- o short time
- No labeling procedure

Microfluidic systems:

- o field deployable
- using small samples and reagent volumes
- easier waste management
- o simple to assemble

The organic optoelectronic devices

Bolognesi, M. ..., Toffanin S. Adv. Mater. 2023, 2208719

The plasmonic sensing surface

Smart-system integration

Prosa, M., ..., Toffanin, S. Adv. Funct. Mater. 2021, 31, 2104927

MOLØKO

The Immunoassay Tech

The microfluidic module

Flow channel pattern with respect to the sensor elements

Sensor prototyping

Assembly of the chip

Automatic Sensor

Self-testing and calibration

- □ Linear dependence of the measured signal with respect to different concentrations of reference solutions (ethanol, sucrose)
- □ Sensitivity limit down to the scale of 100 RU (10⁻⁴ RIU)
- Channel-specific correction factor is extrapolated to be used for the quantitative assay analysis

Analytical detection

Multiplex detection

Multiplexing detection of lactoferrin (quality parameter), streptomycin and quinolone (safety parameters) in buffer medium simultaneously on the same chip:

Limit of Detection (LOD) of Lactoferrin comparable to golden lab instrumentation (Biacore) at around 9 µg/mL

Direct assay for Lactoferrin detection

Competitive assay for Streptomycin detection

Data Analysis from KODE srl

Comparison with standard SPR instrument

Quantitative linear response of biosensor prototype vs Biacore 3000:

- $\hfill\square$ Sensitivity with reference sucrose solutions
- □ LOD for lactoferrin concentration in buffer

Competitors of MOLOKO sensor

-	Method	Principle	Time	Typical Cost per Test	Market Suitability	Comments
	DELVO Test	Colour spore test, during incubation spore grows altering pH	3-3.5hr	Varies on volume, guide €2-4	Accepted industry standard across all locations, screening against all most families of antibiotics.	Simple and easy test to be performed anywhere with incubator block.
				Instrument cost €300		
	Lateral Flow Immunoassay LFI	Sample flows up immunoassay based paper-stick to a test line.	5-10 min	Guide €1-10 depending on format.	Used by >95% of dairies as the milk tanker acceptance test. Many suppliers.	More antibiotic families can be detected using multi-format tests.
	UniSensor EXTENSO	Multiplex biochip suitable for >120 analytes.	15 min	Unknown, but depends on what customer tests for.	Could be a routine analysis tool but the test time longer than dairies' expectation	Details are not widely known.
	NEOGEN Raptor	A new system based on LFI to improve usability.	5-10 min	Varies on volume, guide €2-4	Successor to BetaStar test but more expensive	Includes incubation and reader along with barcode for test type.
	MOLOKO	Innovative SPR based system	15 min	€5	Yet to be determined	Additional benefits with multiplexing , automated testing, quality parameters and reusability

MOLØKO

In-field demonstration of MOLOKO sensor

Integration in milking parlours

Automated composite sampler for analyser system developed and installed in a milking parlour (farm) and demonstrated on-line operation including cleaning in place (PIC)

Conclusions

Realization and demonstration of an innovative miniaturized optical biosensor for PON based on:

- Monolithically integration of organic light source and detector
- Biofunctionalized transducing surface for SPR label-free detection
- Detection of a high-molecular-weight analyte (i.e., lactoferrin) by direct assay, and of a low-molecular weight analyte (i.e., streptomycin) by competitive assay

Quantitative linear response when exposed

to a refractive-index change of the surrounding bulk medium:

• **LOD of 10⁻⁴ RIU** (only 1 ord order of magnitude lower than the reference benchtop SPR instrument Biacore)

□ Key-performance indicators:

- o Competitive sensitivity
- o Cost per test
- Speed of analysis (15 min-long measurement protocol)
- o Multiplex capabilities
- Portability (multiple end-user scenarios)

Multimode detection in miniaturized systems

Sensing Film (PtOEP:PS) PtOEP:PEG:PS sensing/scattering films PL OLED Glass Sub OLED Long-Pass filter Microcavity OLED PD PD .7, Liu et al, Anal. Chim. Acta, 2013, 778, 70

Back-scattering mode

Transmission mode

Back-scattering side-by-side mode

Multimode detection in miniaturized systems

Optical observables:

- Absorption
- Reflectivity (i.e. plasmonic resonance)
- o <u>Photoluminescence</u>

PROJECT TITLE: photonic system for Adaptable muLtiple-analyse Monitoring of fOod quality

- ACRONYM: h-ALO
- **START DATE:** 01/01/2021
- **DURATION:** 36 Months
- **TOPIC:** ICT-37-2020 | Advancing photonics technologies and application driven photonics components and the innovation ecosystem

EU CONTRIBUTION: 4,239,432 Euro

PROJECT DETAILS

PHOTONICS²¹

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101016706".

Wavelength [nm]

PHOTONICS²

Development of single components

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101016706".

Design of the system

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101016706".

Output signal

Limit of detection

grant agreement No 101016706".

Limit of detection

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101016706".

Emission optical filter

(I - I₀) / I₀ Fluorescence signal variation normalized to the chip response to ethanol (S/N ratio)

The use of a DBR filter reduces the noise arising from back-scattered OLED light

Linearity in dose-response curve

Conclusions

- On-chip all-organic fluorescence sensor comprising optical component
- Optimized design to increase the system efficiency
- Detection of biological dyes up to micromolar concentrations
- Prone to DNA detection (fluorescent nucleic acid stain conc. = 5 mM)

Acknowledgments

Mario Prosa Margherita Bolognesi Emilia Benvenuti Salvatore Moschetto Marco Natali Federico Prescimone Francesco Reginato Giulia Baroni

Photonic system for adaptable multiple-analyte monitoring of food quality Grant agreement No 101016706

Photonic system for adaptable multiple-analyte monitoring of food quality Grant agreement No 101016706

 Ready to enhance your knowledge in optical and electronic systems for analytical monitoring? Join the h-ALO Training School! Save the date and stay tuned for more information about the event!
 Ready to enhance your knowledge in optical and electronic systems for analytical monitoring? Join the h-ALO Training School!
 #hALOProject #TrainingSchool #AgriculturalInnovation #biosensing

For more information, please check:

https://h-alo.eu/h-alo-training-school/

Thank you for your attention!