EXPERIMENTAL NUCLEAR ASTROPHYSICS

James deBoer

University of Notre Dame and the Joint institute for nuclear astrophysics

University of Bologna summer school, July 18, 2023

- What is Nuclear Astrophysics?
- Nucleosynthesis
- ► Facilities
- Detectors
- Measurement Limits
- Underground Facilities
- New Types of Facilities
- ► Some Nice Example Projects

OUTLINE

How were the elements in the universe formed? (nucleosynthesis)

Why do they exist in the amounts that they do? (abundance)

THE QUESTION

How is nuclear astrophysics a science?

Observational Astronomy and Astrophysics

Experimental and Theoretical Nuclear Physics

Birth of nuclear astrophysics

Eddington (1920)

 Conversion of four hydrogen nuclei into one helium nuclei can power the sun! Quantum Tunneling!

- Hans Bethe (1939)
- Gives the first detailed description of how hydrogen burning works

$$4 \text{ X M}_{\text{hydrogen}} > \text{M}_{\text{helium}}$$

E = mc²

$$\begin{array}{ll} {\rm C}^{12} + {\rm H} = {\rm N}^{13} + \gamma, & {\rm N}^{13} = {\rm C}^{13} + \epsilon^+ \\ {\rm C}^{13} + {\rm H} = {\rm N}^{14} + \gamma, & \\ {\rm N}^{14} + {\rm H} = {\rm O}^{15} + \gamma, & {\rm O}^{15} = {\rm N}^{15} + \epsilon^+ \\ {\rm N}^{15} + {\rm H} = {\rm C}^{12} + {\rm He}^4. & \end{array}$$

Burbidge, Burbidge, Fowler, and Hoyle (1957)

 Set forth most of the processes that we now believe form the elements Hydrogen burning, helium burning, carbon burning, etc.

r-process, s-process, etc.

Physics concept: Quantum tunneling

Probability of a particle penetrating through a classically impassible barrier.

This barrier is the repulsion of two like **charged particles** and angular momentum

The idea that quantum particles exist as "probability packets" not localized particles.

Without quantum tunneling, our sun would not "burn".

Cross Section = Tunneling Probability

Banerjee and Mastrangelo, Micro 2022 2(4) 679-698 (2022)

Physics concept: binding energy

Recombination occurs 380,000 years after the big bang

FIRST STARS form 200–400 million years after the big bang

IRST GALAX

LL.

Universe forms roughly 13.8 billion years ago DARK AGES

Reionization

begins when the first stars start to shine complete within 1 billion years after the big bang

SUN forms more than 9 billion years after the big bang

UNIVERSE THROUGH TIME

11

п

James Webb telescope website (Credit: STScI)

James Webb telescope website (Credit: STScl)

BIG BANG NUCLEOSYNTHESIS

- Gravity fights nuclear energy production
- Stars burn hydrogen into helium for most of their lives
- Some nuclear reactions contribute both to nucleosynthesis and energy production
- Some only contribute to nucleosynthesis and happen "in the background" compared to energy production reactions

© 2014 Pearson Education, Inc.

PHYSICS CONCEPT: HYDROSTATIC EQUÍLIBRIUM

Hydrogen Burning

pp chains $4^{1}H \rightarrow {}^{4}He + 2e^{+} + 2v_{e} + 2\gamma$ $({}^{3}He + {}^{4}He \rightarrow {}^{7}Be^{*} + \gamma \rightarrow {}^{7}Li$)

CNO cycle ${}^{12}C+{}^{1}H \rightarrow {}^{13}N + \gamma$ ${}^{13}N \rightarrow {}^{13}C+e^++\nu_e$ ${}^{13}C+{}^{1}H \rightarrow {}^{14}N + \gamma$ ${}^{14}N + {}^{1}H \rightarrow {}^{15}O + \gamma$ ${}^{15}O \rightarrow {}^{15}N + e^++\nu_e$ ${}^{15}N + {}^{1}H \rightarrow {}^{12}C + {}^{4}He$

Sites of nucleosynthesis: Stellar burning: Main Sequence

Helium Burning $3^{4}\text{He} \rightarrow {}^{12}\text{C} + \gamma$ ${}^{12}\text{C} + {}^{4}\text{He} \rightarrow {}^{16}\text{O} + \gamma$ ${}^{16}\text{O} + {}^{4}\text{He} \rightarrow {}^{20}\text{Ne} + \gamma$ s process (n + ⁺⁶⁰X → Heavy Nuclei)

Carbon Burning ¹²C + ¹²C \rightarrow ²³Na + ¹H \rightarrow ²⁰Ne + ⁴He \rightarrow ²⁴Mg + γ

Messy Burning Stuff → Iron Peak

 $(^{13}C + {}^{4}He \rightarrow {}^{16}O + n)$ $(^{22}Ne + {}^{4}He \rightarrow {}^{25}Mg + n)$

Sites of Nucleosynthesis: Red Giant stars

Hot CNO Cycle

r process (n + $^{+60}X \rightarrow$ Heavy Nuclei)

v process($v + X \rightarrow Y$)

???? Process(es)

Sites of Nucleosynthesis: More exotic locals

Abundance patterns (r-process)

Maxwellian averaged reaction rate

$$N_{\rm A}\langle \sigma v \rangle = N_{\rm A} \frac{(8/\pi)^{1/2}}{\mu^{1/2} (k_{\rm B}T)^{3/2}} \int_{0}^{\infty} \sigma E \exp(-E/k_{\rm B}T) dE,$$

goes as e^{-2\pi\eta} at low energy

where $\eta = Z_1 Z_2 / E$

Reaction Rate

 $^{12}C(\alpha,\gamma)^{16}O$ at T = 0.2 GK

The temperature in stars corresponds to a low accelerator energy!

Nuclear structure and reaction mechanisms

- We don't fully understand the mechanisms that govern these reactions because we don't know how to fully describe the underlying nuclear forces
 - A theory problem that nuclear physics has never been able to solve
- We therefore try to understand the behavior of specific reactions by measuring over a wide energy range
- If we can describe the cross section over a wide energy range with a phenomenological model (partial physics, partial free parameters), we can then try to extrapolate to very low energies

A few example facilities

Example low energy nuclear physics lab for charged particle beams: the University of Notre Dame

High Intensity γ-ray Source (HIγS)

Neutron Time of Flight _______

Neutrons only have a half life of about 10 minutes

They are responsible for the creation of nearly all of the elements heavier than iron.

Scattering measurements at ND, charged particle detection

¹⁵N gas target, about 3 ug/cm² (0.1 keV at 1 MeV)

Solid Adenine ($C_5H_5N_5$) target, about 20 ug/cm² (3 keV at 2 MeV)

Some example charged particle detectors

Hammatsu photo pin diodes

Mirian technologies silicon detectors

"Lampshade" array

" 4π " neutron moderator type detector

Liquid scintillators for neutron detection

What limits our measurements?

Beam intensity

• We can make a super intense particle beam, but then we melt our target!

Target thickness

• We can make a very thick target, but then we loose energy resolution, making the results harder to understand

Detectors

• Our detectors are limited by energy resolution and efficiency, but this is where there is the most development

Background

- Very often, the signals that we want to detect are very weak compared to other signals coming from unwanted reactions
- These can be the result of impurities in our target or particle beam
- They can just come from natural decaying radioactive nuclei in building material and detector material
- They can be from cosmic rays

Time

Students want to graduate at some point

Cross Section measurements over a wide energy range

Data set comparison and uncertainty evaluation (Bayesian methods now becoming popular)

S-factor to reaction rate

We take the reaction rate with an improved determination and uncertainty and feed it back into the astrophysics simulations.

FOREFRONT FACILITIES: UNDERGROUND LOW / BACKGROUND

- One of the experimental facilities in Hall B
- Two particle accelerators underground!

LUNA

CASPAR

Homestake, South Dakota, USA

ometers

CHINA JINPING UNDERGROUND LABORATORY

10⁻¹ Surface 1.E+04 E., > 3.5 MeV -inside LNGS, Al counter Counts/keV/hours 1.E+03 10⁻² —outside 232Th 3.3 · 10⁻¹ out LNGS, Steel counter 1.E+02 1.E+01 1.E+01 1.E+0(1.E-0 1.E-($2.4 \cdot 10^{-4}$ in -15 cm lead Counts per channel [s⁻¹] Radiation LNGS/out 10 10-6 muons 10-3 neutrons 10 **10**⁻⁵ Environmental radioactivity cosmic rays 1.E-03 10⁻⁶ 1000 2000 4000 7000 3000 5000 6000 8000 0 E,[keV] J. Phys. G: Nucl. Part. Phys. 45 (2018) 025203 (10-7 200 600 800 400 1000 Channel

Figures from Andreas Best

SPECTRUM BACKGROUND SUPPRESSION FROM ROCK SHIELDING

A few example facilities

RADIOACTIVE BEAM FACILITIES

- Closely reproduce the temperature and density conditions of a stellar interior
- But only for a few nanoseconds at a time

NATIONAL IGNITION FACILITY (NIF)

SOME "IDEAL" RESEARCH PROJECTS

Ca production in POP III stars

- The Keller star is extremely metal poor, yet it has a measurable abundance of Ca
- What was the method for this Ca production?
- Hot CNO breakout is suggested
- Yet simulations by Ondrea Clarkson and Falk Herwig, Mon. Not. R. Astron. Soc. 500, 2685 (2020) say it can't work, unless the reaction rate of
 ¹⁹F(p,γ)²⁰Ne / ¹⁹F(p,α)¹⁶O is 10 times higher than predicted

What's the hot CNO cycle?

¹⁹F(p, γ)²⁰Ne at JUNA

Motivation

- Together with the 3α process, the ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction determines the ${}^{12}C/{}^{16}O$ ratio in the universe.
- For stellar evolution, the ¹²C/¹⁶O ratio determines the evolution of massive stars, which in turn effects all later stages of nucleosynthesis.

TABLE I. Astrophysical environments and burning stages where the ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction plays an important role. The temperatures of these environments dictate the energy ranges where the ${}^{12}C(\alpha, \gamma){}^{16}O$ cross section must be well known for an accurate calculation of the reaction rate.

Burning stages	Astrophysical sites	Temperature range (GK)	Gamow energy range (MeV)
Core helium burning	AGB stars and massive stars	0.1-0.4	0.15-0.65
Core carbon and oxygen burning	Massive stars	0.6–2.7	0.44–2.5
Core silicon burning	Massive stars	2.8-4.1	1.1–3.4
Explosive helium burning	Supernovae and x-ray bursts	≈ 1	0.6-1.25
Explosive oxygen and silicon burning	Supernovae	> 5	> 1.45

the second se

LIGO aerial photo

Motivation Highlight: Black Hole Mass Gap

LIGO - A GIGANTIC INTERFEROMETER

Illustration: © Johan Jarnestad/The Royal Swedish Academy of Sciences

Many experimental studies help determine this reaction rate Total capture cross sections (recoils)

Simple Monte Carlo

- Created thousands of "synthetic" data sets by assuming that the error bars on the data represented an underlying Gaussian (probably should have used lognormal) Probability Density Function.
- Refit
- Histogrammed S-factor calculated at many energies to get uncertainty.
- Calculated many different variations on assumptions about the *R*-matrix fit and included those as well.
- Even more computationally expensive

Monte Carlo of experimental data Model uncertainties

Feeding cross section data back into the model

Comparing with LIGO observations of gravitational waves from black hole mergers: A new frontier for nuclear astrophysics

Mehta *et al*. (2022)

Thank you!

